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Abstract—Masked graph autoencoder (MGAE) has emerged as
a promising self-supervised graph pre-training (SGP) paradigm
due to its simplicity and effectiveness. However, existing efforts
perform the mask-then-reconstruct operation in the raw data space
as is done in computer vision (CV) and natural language process-
ing (NLP) areas, while neglecting the important non-Euclidean
property of graph data. As a result, the highly unstable local
structures largely increase the uncertainty in inferring masked data
and decrease the reliability of the exploited self-supervision signals,
leading to inferior representations for downstream evaluations. To
address this issue, we propose a novel SGP method termed Robust
mAsked gRaph autoEncoder (RARE) to improve the certainty in
inferring masked data and the reliability of the self-supervision
mechanism by further masking and reconstructing node samples
in the high-order latent feature space. Through both theoretical
and empirical analyses, we have discovered that performing a joint
mask-then-reconstruct strategy in both latent feature and raw data
spaces could yield improved stability and performance. To this
end, we elaborately design a masked latent feature completion
scheme, which predicts latent features of masked nodes under the
guidance of high-order sample correlations that are hard to be
observed from the raw data perspective. Specifically, we first adopt
a latent feature predictor to predict the masked latent features
from the visible ones. Next, we encode the raw data of masked
samples with a momentum graph encoder and subsequently em-
ploy the resulting representations to improve the predicted results
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through latent feature matching. Extensive experiments on seven-
teen datasets have demonstrated the effectiveness and robustness
of RARE against state-of-the-art (SOTA) competitors across three
downstream tasks.

Index Terms—Incomplete multi-view learning, classification,
masked graph autoencoder, robustness.

I. INTRODUCTION

MASKED autoencoders (MAEs) have emerged as the
dominant technique for self-supervised vision and lan-

guage pre-training. The objective of MAEs is to learn gen-
eralized sample representations from massive unlabeled data
by recovering partially masked content (e.g., image patches or
word embeddings) from observations. Due to their simplicity
and powerful local structure modeling capabilities, advanced
efforts in this field [1], [2], [3] have garnered significant interest
among researchers. These methods have demonstrated impres-
sive performance across a wide range of real-world applications,
including medical image analysis [4], natural language under-
standing [5], and 3D object detection [6].

Recent studies have shown that applying MAEs to facilitate
graph machine learning has become a topic of increasing in-
terest. The success of masked graph autoencoders (MGAEs)
lies in the mask-then-reconstruct operation. In this setup, a
portion of visible nodes or edges are randomly masked and
then adopted as self-supervision signals to guide the model
learning, so as to allow the network to explore the underlying
structural information for downstream evaluations [7], [8], [9],
[10], [11], [12], [13]. Despite their promising performance on
various graph-oriented tasks [14], [15], [16], existing MGAEs
overlook the inherent distinction between images (or texts) and
graphs, i.e., images (or texts) are Euclidean while graphs are
non-Euclidean. In other words, the nearby structure of an image
patch or a sub-sentence has higher semantic certainty and is
more stable than that of a sub-graph. Therefore, the quality
of the self-supervision guidance provided by a masked image
patch or a masked word embedding would be much higher
than that provided by a masked node (or edge). Specifically,
as shown in Fig. 1(a), since the relative spatial distribution of
organs on a dog is quite certain, people can easily imagine the
masked image patches based on the observed content within
an incomplete dog photo. Similarly, in Fig. 1(b), the strong
context correlation among words helps us involuntarily fill an
incomplete sentence with meaningful words. Comparatively,
in a social network where nodes are entities and edges are
interactions, the neighborhood structure of an entity within a
graph varies a lot, as shown in Fig. 1(c). When a node or an edge
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Fig. 1. Information masking on different types of data. For instance, masking
image patches on images (a) or word embeddings on texts (b) would not alter the
underlying semantics of the original data to some extent. In other words, even
after a portion of image patches or word embeddings are masked, people can still
recognize the object visually or understand the language content by inferring
the invisible content based on observed contexts. However, masking nodes or
edges on non-Euclidean graphs (c) may unexpectedly increase the uncertainty
when inferring masked data, since the nearby structure of a node or an edge is
less stable and has lower certainty than that of an image or a text.

is entirely masked, it is hard to identify the removed entity or
ascertain whether two entities keep in contact directly, since
it is common for two unconnected entities to have conjoint
neighbors or valuable higher-order relationships that are hard
to be observed from the raw data perspective in a real-world
social graph. Consequently, although in most cases, the mask-
then-reconstruct principle is effective for learning valuable node
representations, directly recovering the masked nodes and edges
driven by the low-level raw data would put the corresponding
model at risk of being confused by the local structural ambiguity.
Based on these observations, we argue that the non-Euclidean
property of graph data could to some extent trigger uncertainty
in inferring masked data and may negatively affect the reliability
of the self-supervision mechanism. In this circumstance, the
robustness of the model may be compromised when applying
a masked autoencoder to process graphs straightforwardly.

To address the above issue, we propose a novel method
termed Robust mAsked gRaph autoEncoder (RARE) for self-
supervised graph pre-training. The main idea of RARE is to
integrate implicit and explicit self-supervision mechanisms for
masked content recovery by performing a joint mask-then-
reconstruct strategy in both latent feature and raw data spaces.
The effectiveness of our method lies in the fact that unlike the
model optimization driven by the low-level raw data only [8],
[9], the self-supervision mechanism of RARE could be further
enhanced by incorporating more informative high-order sample
correlations that are hard to be observed from the raw data per-
spective [17], [18], [19]. To this end, we design a masked latent
feature completion scheme that includes two steps. Specifically,
we first adopt a latent feature predictor to assist the graph encoder
in extracting more compressed features by predicting the latent
features of masked samples based on observations. To further

enhance the integrity and accuracy of predicted representations,
we encode the raw data of masked samples using a momentum
graph encoder and leverage the resultant representations to guide
the latent feature prediction through information matching. With
such persistent and informative signals as self-supervision guid-
ance, each masked sample in the latent space is encouraged
to explore reliable information from available features. As the
implicit self-supervision signals become more reliable and the
reconstructed content becomes more accurate, the model is
enforced to promote greater information encoding capability,
thereby generating more robust and generalized node represen-
tations for downstream evaluations. The main contributions of
this work are summarized below:
� We propose a novel SGP framework termed RARE to

enhance the robustness of masked graph autoencoders.
It not only eases the instability of the self-supervision
mechanism driven by the non-Euclidean raw graph data,
but also achieves a good accuracy-efficiency trade-off.

� We incorporate a simple but effective masked latent feature
completion scheme into a masked graph autoencoder. This
design can enhance the certainty in inferring masked data
and the reliability of the self-supervision mechanism by ex-
ploiting more informative high-order sample correlations
to drive the model learning.

� Extensive experiments on seventeen datasets across three
downstream tasks demonstrate the effectiveness and ro-
bustness of RARE against competitors. Moreover, a series
of elaborate ablation studies also verify that RARE can
indeed unleash the full potential of MAEs to provide a
comprehensive understanding of graphs.

The remainder of this paper is organized as follows. In Section
II, we review related work in areas of self-supervised graph
pre-training, masked graph autoencoders, and self-distillation
on graphs. Section III presents defined notations, the network
designs, loss functions, and theoretical discussions. In Section
IV, we conduct experiments and analyze the results. Section V
draws a final conclusion.

II. RELATED WORK

A. Self-Supervised Graph Pre-Training

Self-supervised graph pre-training (SGP), whose goal is to
learn representations from supervised signals derived from
the graph data itself, has made significant progress recently.
With the powerful learning capability of graph neural networks
(GNNs) [20], [21], [22], [23], [24], advanced studies in this
field have recently achieved great success in recommendation
system [25], feature selection [26], graph clustering [27], [28],
knowledge graph [29], [30], etc. One of the most represen-
tative self-supervised learning paradigms is contrastive SGP,
where discriminative features are learned by pulling together
the representations of semantically similar samples while push-
ing away the ones of unrelated samples [31], [32], [33], [34],
[35], [36], [37], [38]. However, the impressive performance of
these methods heavily relies on careful data augmentations,
large amounts of negative samples, or relatively complicated
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optimization strategies, which usually cause time- and resource-
consuming issues. Comparatively, generative/predictive SGP
methods [9], [39], [40], [41], [42], [43], [44] could naturally
avoid the low-efficiency problem, as their optimization target
is to reconstruct the input (or masked) information directly.
In particular, masked graph autoencoders (MGAEs) [9], which
aim to predict the masked content from the visible one, have
significantly advanced classical graph autoencoders and shown
their potential to achieve better performance against contrastive
learning-based competitors.

B. Masked Graph Autoencoders

Masked signal modeling (MSM), which models masked sig-
nals locally to facilitate the extraction of significant features,
has recently gained popularity in self-supervised vision and
language applications, such as natural language understand-
ing [5] and medical image analysis [4]. Inspired by the successes
of existing masked autoencoders (MAEs) [1], [2], [3], [45],
researchers pose a natural question regarding the potential of
utilizing MAEs to handle large amounts of unlabelled graph
data. To this end, MGAE [7] first applies an undirected edge-
masking strategy to the original graph structure, and then uti-
lizes a tailored cross-correlation decoder to predict the masked
edges via a standard graph-based loss function. Similarly,
MaskGAE [8] incorporates random corruption into the graph
structure from both edge-wise level and path-wise level, and then
utilizes edge-reconstruction and node-regression loss functions
to match the predicted information with the original data. An-
other important research line in this field is node-masking-based
MGAEs [9], [10], [46]. For example, GMAE [46] utilizes a
graph transformer-based backbone [47] to learn representations
and applies a cross-entropy loss to compare the reconstructed
attributes with their ground truths. Similarly, GraphMAE [9]
reconsiders the reconstruction loss functions of previous graph
autoencoders and proposes an improved scaled cosine loss
function to boost the quality of the masked attribute recovery.
Towards this research line, some studies first randomly mask
a portion of node attributes and connections of given graphs
simultaneously, and then learn to predict the removed content
from available information via two specific reconstruction objec-
tives [12], [13]. More recently, MAEs-based techniques have in-
spired a broad range of graph learning applications. For instance,
AutoCF [48] proposes an adaptive self-supervised augmentation
for masked graph autoencoder pre-training in a recommendation
system, achieving promising performance improvements while
avoiding noise perturbation within raw data. GMAE-NAS [16]
optimizes a masked graph autoencoder-enhanced predictor for
neural architecture search by calculating the cross-entropy loss
between the masked vertices of the original and reconstructed
graphs. However, most of the aforementioned methods typically
learn representations by minimizing the reconstruction loss in
the raw data space directly, which may mislead the model into a
local structural ambiguity situation caused by the non-Euclidean
property of graphs. In contrast, RARE can effectively enhance
the certainty in inferring masked data and the reliability of the
self-supervision mechanism by reconciling the reconstructions

of masked raw attributes and latent features, unleashing the
potential of MAEs for graph analysis while mitigating the afore-
mentioned negative effects.

C. Self-Distillation on Graphs

Self-distillation has emerged as a powerful technique for self-
supervised learning, as evidenced by its successful applications
in various domains [49], [50], [51], [52], [53]. This technique
involves using the outputs of a target network as pseudo labels to
guide the representation learning of an online network, which en-
courages the feature extractor to learn more generalized features.
Self-distillation has also been widely developed and employed in
multiple graph machine learning tasks, including graph structure
learning [53] and augmentation-free node clustering [54]. While
previous studies have focused on complete graphs, it is crucial to
explore the effectiveness of self-distillation in boosting MGAEs
in scenarios where the graph data is incomplete. This motivates
us to investigate the feasibility of enhancing the robustness of
MGAEs with the aid of self-distillation learning, as well as
uncovering the key factors that contribute to the success of
RARE.

III. METHOD

A. Task Definition and Overall Framework

1) Task Definition: In this study, we mainly focus on the task of
self-supervised masked graph pre-training for unlabeled graphs.
Our model is designed to learn two graph encoding functions
(i.e., Fg(·) and Fm(·)), along with a hidden predicting function
(i.e.,Fp(·)) to recover masked latent features from observations.
Subsequently, a decoding function (i.e., Fd(·)) is employed to
reconstruct the raw attributes of masked samples based on the
predicted representations. The learned graph embedding can be
saved and utilized for various downstream tasks, such as node
classification and graph classification.

2) Overall Framework: As shown in Fig. 2, the learning
procedure of RARE could be mainly grouped into three parts.
The goal of the data masking part is to generate two com-
plementary masked graphs by randomly masking some nodes
with tokens under a mask ratio r. The masked latent feature
completion part is the core of RARE, which aims to enhance the
reliability of the self-supervision mechanism by leveraging more
informative high-order sample correlations to drive the model
learning. It consists of three components. First, the graph en-
coder maps the visible nodes into node representations. Second,
the latent feature predictor performs a latent feature prediction
from visible nodes to masked ones. Third, the momentum graph
encoder receives the raw data of masked nodes as inputs and
takes the resultant representations as implicit self-supervision
signals for matching with the predicted representations. In the
data decoding part, the decoder only maps the representations of
masked nodes into the raw data space. Finally, LM and LR are
minimized in the latent feature and raw data spaces, respectively.
After pre-training, only the backbone of the graph encoder is
adopted for downstream evaluations. The following subsections
present the technical details of the corresponding components.
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Fig. 2. Overview of RARE. During the pre-training phase, a graph is par-
titioned into two complementary masked graphs randomly. These graphs are
then fed into the graph encoder and the momentum graph encoder, respectively.
Next, the latent feature predictor is applied to predict the masked content from
the visible one. Thereafter, the predicted representations are approximated to
the output of the momentum graph encoder and processed by a simple decoder
that reconstructs the raw attributes of masked nodes.

B. Data Masking

Before pre-training RARE, we first generate two comple-
mentary masked graphs as inputs. These graphs are then fed
into the graph encoder Fg(·) and the momentum graph encoder
Fm(·), respectively. To begin, we denote an undirected graph
G = {V, E} that contains |V| nodes with C categories. Here, V
and E indicate the node set and the edge set, respectively. Gener-
ally, G can be characterized by its normalized adjacency matrix
Ã ∈ R

|V|×|V| and raw attribute matrix X ∈ R
|V|×D, where D

refers to the dimension of node attributes. To perform the data-
masking operation on a given graph, we initially draw a random
binary mask vector b ∈ R

|V|, where bi = 0 if xi is masked with
a node token, and bi = 1 otherwise. The probability of drawing
0 is r, which represents the mask ratio. Based on b, we obtain
the raw attribute matrix of visible nodes Xv ∈ R

|Vv |×D and the
raw attribute matrix of masked nodes Xm ∈ R

|Vm|×D

Xv = X[b], Xm = X[1− b]. (1)

Accordingly, the nodes in G are randomly divided into two sets,
i.e., the visible node set Vv = {xv

i }
|Vv |
i=1 and the masked node set

Vm = {xm
j }
|Vm|
j=1 , where V = Vv ∪Vm, Vv ∩Vm =∅. |Vv| and

|Vm| denotes the number of visible nodes and masked nodes, re-
spectively, where |V|= |Vv|+ |Vm|. Correspondingly, we define
token-masked node sets of the visible part and the masked part
as T v = {tvi }

|Vv |
i=1 and T m = {tmj }

|Vm|
j=1 , respectively, where tvi

(or tmj ) ∈ R
D refers to a stochastic learnable vector. With these

mathematical formulations, two complementary masked graphs
used for pre-training can be denoted as Gv = {Vv, T m, E} and
Gm = {Vm, T v, E}, respectively. All frequently used notations
are listed in Table I.

C. Masked Latent Feature Completion

As discussed in the previous section, although the masked
autoencoder has proven effective and efficient, applying it to

TABLE I
SUMMARY OF FREQUENTLY USED NOTATIONS

process non-Euclidean graphs directly may not always provide
the required expressive capability for feature extraction. To
address this issue, we propose a simple yet effective Masked
Latent Feature Completion (MLFC) scheme. It facilitates model
learning by incorporating more informative high-order sample
correlations that are hard to be observed from the raw data
perspective, leading to enhanced certainty in inferring masked
content and a more reliable self-supervision mechanism for
greater information encoding capability. The learning process
of MLFC includes the following four main steps.

1) Graph Encoding: The graph encoder Fg(·) is responsible
for transforming the masked graph Gv into a low-dimension
latent space. To achieve this, we employ a graph neural network
(GNN)-based architecture that consists of a sequence of graph
attention layers [55] or graph isomorphism layers [56] as the
encoder backbone. Inspired by BYOL [51], we incorporate a
multilayer perception (MLP) layer as a projector following the
backbone to form the graph encoder. This encoder generates the
representation matrix of visible nodes Zv ∈ R

|Vv |×d, where d
represents the latent dimension.

2) Latent Feature Predicting: Following the graph encoder
Fg(·), an autoencoder-style latent feature predictor Fp(·) is
elaborately designed, which consists of two parts, i.e., a graph
attention (or graph isomorphism) layer that recovers the masked
content from observations and an MLP layer that predicts the
latent features of masked nodes based on recovered information.
Specifically, we utilize a Concat function C(·) to integrate
Zv and a token-masked representation matrix Hm ∈ R

|Vm|×d,
where hm

j ∈ R
d denotes a d-dimensional stochastic learnable

vector. It is worth noting that the information concatenation
used here to construct the recomposed representation matrix
Z̃ ∈ R

|V|×d is not the classic channel-wise or row-wise concate-
nation. Instead, we fill the visible part with Zv and the masked
part with Hm to create Z̃. Finally, we apply Fp(·) to process Z̃
and obtain the predicted representation matrix of masked nodes
Ẑm ∈ R

|Vm|×d.
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3) Momentum Graph Encoding: Since we have obtained the
predicted representations of masked nodes, a natural question
arises: how can we provide effective supervision to guide the
masked latent feature completion in the unsupervised scenario?
Our answer is to acquire the self-supervision signals from the
data itself via self-distillation learning. To this end, we introduce
a momentum graph encoderFm(·) that has the same architecture
as the graph encoder. This encoder is responsible for encoding
the raw data of masked samples and utilizing their complete
representations to provide the predicted ones with stable opti-
mization guidance. Concretely, we take the masked graph Gm
as an input and feed it into Fm(·). The resultant representation
matrix Zm ∈ R

|Vm|×d preserves high-order sample correlations
and serves as implicit self-supervision signals to refine Ẑm.
It is worth noting that Fm(·) is detached from the gradient
back-propagation, and its parameters are updated by exponential
moving average (EMA) [51]. The parameters ofFg(·) andFm(·)
are denoted as ΘFg

and ΘFm
, respectively, and the parameters

of Fm(·) are updated by

ΘFm
← μΘFm

+ (1− μ)ΘFg
, (2)

where μ denotes the momentum factor that has been determined
empirically and fixed as 0.1. Since both graph encoders involve
training on multiple subsets of a common graph, the EMA can
provide Fm(·) with a smooth estimate of the underlying graph
data distribution from Fg(·), thus promoting Fm(·) to encode
reliable information.

4) Latent Feature Matching: This operation acts as an implicit
form of self-supervision for recovering masked content at the
feature level. Rather than aiming to maintain similarity between
the reconstructed nodes (or edges) and the raw information of the
original graph, our method focuses on ensuring that the predicted
representations precisely match with the underlying structural
statistics calculated by the momentum graph encoder. To this
end, we approximate Ẑm to Zm by minimizing the following
formulation:

LM =
1

|Vm|

|Vm|∑
j=1

‖ẑmj − zmj ‖2, (3)

where ẑmj ∈ R
d andzmj ∈ R

d indicate the representation vectors

of jth masked node within Ẑm and Zm, respectively. According
to (3), we recover masked information within the latent space
by constraining the predicted representations to match with the
ones that preserve more informative underlying structural infor-
mation of the graph. By taking these implicit self-supervision
signals as model learning guidance, we could ensure the integrity
and accuracy of predicted representations, resulting in a higher
quality of the learned graph embedding.

D. Data Decoding

To complete the raw attributes of masked nodes, we employ a
simple MLP layer as a decoderFd(·) to map Ẑm into the raw data
space. Once the reconstructed raw attribute matrix of masked
nodes X̂m ∈ R

|Vm|×D has been processed by the decoder, we
take Xm ∈ R

|Vm|×D as explicit self-supervision signals and

Algorithm 1: Robust Masked Graph Autoencoder (RARE).

Input: Raw graph G = {V, E}; token-masked nodes
{T v, T m}; token-masked representation matrix Hm;
maximum iterations E; mask ratio r; scaling factor t;
balanced coefficient α; model parameters
{ΘFg

,ΘFm
,ΘFp

,ΘFd
}; learning rate η.

Output: Pre-trained parameters ΘFg
.

1: Initialize {ΘFg
,ΘFm

,ΘFp
,ΘFd

} with an Xavier
manner.

2: for e = 1 to E do
3: {Vv,Vm} ← Split V into visible and masked node

sets.
4: {Gv,Gm} ← Obtain two masked graphs.
5: Zv ← Obtain representations from Gv with Fg(·).
6: Z̃← Integrate Zv and Hm using C(·).
7: Ẑm ← Obtain predicted representations with

Fp(·).
8: Zm ← Obtain representations from Gm with

Fm(·).
9: LM ← Calculate the loss by (3).
10: X̂m← Obtain raw attributes from Ẑm with Fd(·).
11: LR ← Calculate the loss by (4).
12: L← Calculate the total loss by (5).
13: Update {ΘFg

,ΘFp
,ΘFd

} by calculating:
ΘFg
← ΘFg

− η∇ΘFgL;
ΘFp

← ΘFp
− η∇ΘFpL;

ΘFd
← ΘFd

− η∇ΘFd
L.

14: Update ΘFm
by (2).

15: end for
16: return ΘFg

reconstruct the raw data for masked nodes by minimizing the
distance between X̂m and Xm. Inspired by the SCE loss [9],
we design an improved scaled cosine loss function to boost the
stability of network training, formulated as

LR = − 1

|Vm|

|Vm|∑
j=1

log

(
1

2
+
〈x̂m

j ,xm
j 〉

2‖x̂m
j ‖‖xm

j ‖

)t

, (4)

where 〈·, ·〉 refers to an inner product operation. x̂m
j ∈ R

D and
xm
j ∈ R

D denotes the raw attribute vectors of jth masked node

within X̂m and Xm, respectively. t is a scaling factor, and we
empirically set t = 2 in most cases.

E. Loss Function and Complexity Analysis

1) Loss Function: By integrating implicit and explicit self-
supervision mechanisms in a united pre-training framework, the
total loss of the proposed RARE can be formulated as a weighted
combination of the latent feature matching loss LM and the raw
attribute reconstruction loss LR

L = LM + αLR, (5)

where α is a balanced coefficient. In the inference phase, the
input graph G with Ã and X is fed into RARE without any
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data-masking operations. The resultant graph embedding can be
saved and used for downstream evaluations, such as graph clas-
sification and image recognition tasks. The detailed pre-training
procedure and pseudo code of RARE are illustrated in Algorithm
1 and Appendix A, available online, respectively.

2) Complexity Analysis: The time complexity of the proposed
RARE could be discussed from the following two perspectives:
the graph autoencoder framework and the loss function com-
putation. For two graph encoders, the complexities of Fg(·)
and Fm(·) are O((|V|d2 + |E|d)KLe), where |V|, |E|, Le,
and K are the number of nodes, edges, encoder layers, and
attention heads, respectively. d is the dimensions of sample
features. For the latent feature predictor, the complexity of
Fp(·) is O((|V|d2 + |E|d)K + |V|d2). For the decoder, the
complexity of Fd(·) is O(|V|d2Ld), where Ld is the number
of decoder layers. For the computation of the loss function,
the time complexities of LM and LR are O(|Vm|d), where
|Vm| is the number of masked nodes. Therefore, the over-
all time complexity of RARE for each training iteration is
O((|V|d2 + |E|d)KLe + |V|d2Ld + |Vm|d). We can observe
that the complexity of RARE is linear with both the number of
nodes |V| and edges |E|of the graph, making the proposed RARE
theoretically efficient and scalable. For more time complexity
discussions among different masked graph autoencoders, please
refer to Appendix B, available online.

F. Discussion

In this section, we aim to explain the reasons why the proposed
MLFC scheme is effective and why RARE works better than
existing MGAEs, respectively.

1) Why The Proposed MLFC Scheme Is Effective: We start
from a more intuitive masked signal modeling perspective to
revisit MLFC. As aforementioned, we can obtain the latent
features of visible and masked nodes from two complementary
masked views (i.e., Gv and Gm), respectively

Zv = Fg(X
v,Tm, Ã), (6)

Zm = Fm(Xm,Tv, Ã). (7)

After that, Fp(·) outputs the predicted representation matrix of
masked nodes Ẑm from that of visible ones Zv , and then match
Ẑm with Zm by (3), which can be rewritten as

LM = EZv,Zm‖Fp(Z
v,Hm, Ã)− Zm‖2. (8)

Based on (8), we observe that the MLFC scheme actually learns
to pair two complementary views (i.e., Zv and Zm) through a
latent feature matching task. Inspired by the previous work [57],
[58], we denote a bipartite graph GB = {Zv,Zm, EB} to model
the corresponding learning problem, where Zv = {Zv}|Z

v |
i=1

and Zm = {Zm}|Z
m|

j=1 denotes the sets of visible views and
masked views, respectively. EB is formulated as an adjacency
matrix AB ∈ R

|Zm|×|Zv |, whose normalized version is ÃB =
Dm− 1

2ABD
v− 1

2 . Here, both Dm and Dv are diagonal degree
matrices of AB . Consequently, we can derive an asymmetric

Fig. 3. Motivation illustration: (a) A masked graph; (b) A bipartite graph
that includes two types of complementary views; (c) and (d) Comparison of
self-supervision mechanisms between two methods. To drive the model learning,
GraphMAE [9] only conducts an explicit self-supervision (i.e., Exp.-SS) mecha-
nism by matching the predicted nodes with raw ones, while the proposed RARE
differs from GraphMAE in taking high-order sample correlations as implicit
self-supervision (i.e., Imp.-SS) signals that are hard to be observed from the raw
data perspective.

instance alignment loss between Zv and Zm to lower bounded
LM .

Theorem 1: We assume that any autoencoder-style architec-
ture F(·) satisfies EX‖F(X)−X‖2 ≤ δ, where X represents
either visible content Zv or masked content Zm, therefore, the
MLFC loss on the bipartite graph GB can be lower bounded by

LM ≥ −EZv,ZmFp(Z
v,Hm, Ã)�F(Zm)− δ + 1

≥ −tr(Um�ÃBU
v)− δ + 1, (9)

where Uv ∈ R
|Zv |×(|Vm|d) denotes the output matrix of Fp(·)

on Zv whose i-row is uv
i=
√
diFp(Z

v,Hm, Ã)i ∈ R
|Vm|d, and

Um ∈ R
|Zm|×(|Vm|d) denotes the output matrix of F(·) on Zm

whose j-row is um
j =
√

djF(Zm)j ∈ R
|Vm|d. Note that both

Fp(·) and F(·) are normalized.
According to (9), it is evident that the MLFC scheme aims

to minimize LM by conducting an implicit similarity-based
alignment between connected visible and masked views in the
latent space through an autoencoder-style predictor. Intuitively,
as illustrated in Fig. 3(b), we consider a pair of second-order
neighbor visible views (e.g., uv

i and uv
i+1) that share a common

complementary masked view (e.g., um
j ). By enforcing uv

i and
uv
i+1 to recover um

j simultaneously, the latent features of visible
views are implicitly correlated through the MLFC scheme.
In other words, the second-order neighbors act as positive
sample pairs that are pulled closer as the instance alignment
(i.e., positive samples should remain close in the latent space)
in non-contrastive learning [51], [52]. From this perspective,
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the proposed MLFC scheme serves as a hidden regularization
that helps the model encode useful features, thereby promoting
greater information encoding capability for better downstream
performance. Please see Appendix C, available online, for proof
details of Theorem 1 and more theoretical discussions.

2) Why RARE Works Better Than Existing MGAEs: To better
understand the superiority of RARE compared to its competi-
tors, we conduct a comparison of the self-supervision mech-
anism between the proposed RARE and the state-of-the-art
(SOTA) GraphMAE [9] via a toy example illustrated in Fig. 3.
As previously mentioned, completing masked content within a
masked graph can be regarded as a complementary view pairing
problem between the visible and masked data. To solve this
problem, GraphMAE [9] adopts an explicit self-supervision (i.e.,
Exp.-SS) mechanism by matching predicted nodes with raw ones
directly, which may mislead the model into a local structural
ambiguity situation. For example, as shown in Fig. 3(c), two
masked samples (e.g., Node 4 and Node 5) belonging to different
categories share a common visible sample (e.g., Node 1). By
enforcing Node 1 to reconstruct Node 4 and Node 5, Graph-
MAE subconsciously reduces their distance in the latent space.
Consequently, the model may struggle to differentiate Node 4
and Node 5 accurately in the unsupervised scenario. This is be-
cause the self-supervision signals provided by GraphMAE only
preserve raw data information that is insufficient to ascertain
whether two nodes belong to the same category or not. In con-
trast, RARE employs both implicit and explicit self-supervision
mechanisms for masked content recovery by performing a joint
mask-then-reconstruct strategy in both latent feature and raw
data spaces. Particularly, in RARE, the MLFC scheme could
take more informative high-order sample correlations as implicit
self-supervision signals, which are not readily available in the
raw data space. As shown in Fig. 3(d), by incorporating prior
knowledge that 1) Node 3 or Node 6 is closely related to Node
4 or Node 5; and 2) Node 3 and Node 6 are highly likely not
to belong to the same category, it would become easier for the
model to infer the relationship between Node 4 and Node 5.
As a result, the two nodes are pushed apart from each other in
the latent space. Extensive empirical results support our claim
that the proposed RARE indeed works better than GraphMAE
by making the learned samples belonging to different categories
more distinguishable.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of RARE against
advanced SGP methods. In the following, we begin with a
brief introduction to experimental setups, including benchmark
datasets, implementation procedures, training setups, and base-
line methods. Then, we report experimental results with corre-
sponding analyses.

A. Evaluation Setups

1) Benchmark Datasets: We conduct experiments to com-
pare the proposed RARE with several baseline methods on
seventeen datasets in total, including seven node classification
datasets, seven graph classification datasets, and three image

classification datasets. Detailed data statistics and affinity graph
construction for non-graph datasets are presented in Appendix
D, available online.
� Citation Graphs: In citation graphs, nodes typically rep-

resent papers, where node attributes correspond to key-
words extracted from the papers. Furthermore, edges de-
note cross-citation connections, while categories reflect
the topics covered in the papers. Please note that nodes
within citation graphs may occasionally represent authors,
institutions, or other entities [59]. The used citation graphs
include Cora, Citeseer, Pubmed, Wiki-CS, and Corafull.

� Social Graphs: The social graph represents entities (e.g.,
users) as nodes, where their interests are captured as at-
tributes, and their social interactions are represented as
edges [59]. The used social graphs include Flickr, Yelp,
IMDB-B, IMDB-M, and COLLAB.

� Molecule Graphs: In molecular graphs, nodes represent
individual atoms within the molecule, and the atom index
is denoted as the node attribute. The edges in the graph cor-
respond to the bonds between the atoms. Molecular graphs
usually consist of multiple inter-connected graphs [59].
The used molecule graphs include MUTAG, PTC-MR, and
NCI1.

� Protein Graphs: The protein molecule graph is a special-
ized form of a molecule graph, where nodes represent
amino acids, and an edge signifies that the connected nodes
are within a distance of less than six angstroms [59]. The
used protein network dataset is PROTEINS.

� Image datasets: Usps comprises 9,298 Gy-scale handwrit-
ten digit images, each with dimensions of 16 × 16 pixels.
The features represent the gray values of the pixel points
in the images [60]. Mnist, which is a subset of a larger
collection from NIST, consists of 60,000 training samples
and 10,000 test samples of handwritten digits. The digits in
Mnist have been resized, normalized, and centered within
fixed-size images of 28 × 28 pixels [61]. Fashion-mnist
includes 60,000 training images and 10,000 test images of
fashion and clothing items. Each image is standardized to
a size of 28 × 28 pixels in grayscale. Fashion-mnist was
developed by Zalando as a compatible replacement for the
original Mnist [62].

2) Implementation Procedures: The learning procedure of
RARE mainly includes two steps: 1) in the pre-training task,
all samples of datasets except for Flickr and Yelp are fed
into the proposed RARE for at least 20 training iterations by
minimizing (5). Since Flickr and Yelp are commonly used
for inductive evaluations, we follow the public data split as
GraphSAINT [63], where 50%/75%, 25%/10%, and 25%/15%
nodes are randomly sampled to form the train, validation, and
test sets on Flickr and Yelp, respectively; and 2) in the node
classification and image classification tasks, we use the pub-
licly available train/validation/test data split for Cora, Citeseer,
Pubmed, Flickr, and Yelp. For WikiCS, Corafull, Usps, Mnist,
and Fashion-mnist, since these datasets have no publicly avail-
able data split, we perform a random data split where 7%,
7%, and 86% nodes are randomly sampled to form the train,
validation, and test sets, respectively. We train a simple linear
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classifier with Adam optimizer until convergence by optimizing
a cross-entropy loss by 10 times. For graph classification, all
used datasets are partitioned based on 10-fold cross-validation
for training and testing. As is done in GraphMAE [9], we take
the support vector machine (SVM) as a classifier and record the
results with 10-fold cross-validation after 5 separate runs. To
mitigate the adverse impact of randomness, we report average
accuracy (ACC) values with standard deviations for each model
in all downstream evaluations.

3) Training Setups: To ensure a fair comparison, all exper-
iments are conducted on the same device. For all compared
baselines, we directly report the results listed in the existing
literature if available. Otherwise, we implement their official
source codes and report the reproduced performance. For our
method, we perform a grid search to select hyper-parameters
on the following searching space: the mask ratio r is selected
between {0.5, 0.75}; the balanced coefficient α is searched
from 1 to 9; the scale factor t is selected between {1, 2};
the hidden size of latent features is selected from {256, 512,
1024}; the number of feature extractor layers is selected from
{1, 2, 3, 4, 5}; the momentum rate is empirically fixed to 0.1
by default; the learning rate of the Adam optimizer is selected
from {1.5e-4, 5e-4, 1e-3}; the maximum epoch is determined
according to the cases of model convergence. Particularly, in
the graph classification task, we 1) choose the batch size from
{32, 64}, similar to GraphMAE [9]; 2) consistently adopt a
batch normalization operation to regularize the model learn-
ing; and 3) follow the sample pooling setups in GraphMAE,
where a non-parameterized graph pooling function (e.g., max-
pooling, mean-pooing or sum-pooling) is employed to generate
graph-level representations. Please note that we employ similar
hyper-parameter setups as reported in GraphMAE [9], and most
hyper-parameters are not carefully tuned for the ease of model
learning. More details can be found in Appendix E, available
online, such as experimental infrastructures, result illustrations,
and detailed hyper-parameter setups.

4) Baseline Methods: In our experiments, we compare the
proposed RARE with twenty-three baseline methods. Detailed
descriptions of all compared baseline methods are listed below.
� GCN [64] is a typical graph neural network (GNN) that

utilizes the label information to train the network in an
inductive manner.

� GAT [55] is a powerful graph neural network that utilizes
attention mechanisms to capture the importance of neigh-
boring nodes within a graph.

� GAE [39] utilizes a GCN-based graph encoder to extract
useful information from the graph and then decodes it by
an inner product operation.

� DGI [31] learns the graph embedding by achieving mutual
information (MI) maximization between node representa-
tions and global summaries.

� MVGRL [34] makes the first attempts to introduce the
concept of multi-view self-supervised graph pre-training
(SGP) by discriminating the representations across two
augmented graph views.

� GRACE [65] generates two augmented graph views at first
and then designs an improved InfoNCE loss to maximize
the agreement of their representations.

� BGRL [52] is an advanced SGP method without requir-
ing negative samples, which gets rid of the potentially
quadratic bottleneck.

� InfoGCL [66] reduces the redundant information between
contrastive sample pairs while preserving as much task-
relevant information as possible.

� CCA-SSG [67] is a simple, efficient, and effective SGP
framework with a canonical correlation analysis (CCA)-
based optimization target.

� MaskGAE [8] merely removes partial node connections
and learns to predict the removed edges from observations
via an edge-level reconstruction.

� GraphMAE [9] pre-trains a graph autoencoder to recon-
struct masked attributes from visible ones in the raw data
space.

� SeeGera [13] employs a variational inference framework
to learn useful features via the structure/feature mask-then-
reconstruct mechanism.

� WL [68] leverages a rapid feature extraction scheme based
on the Weisfeiler-Lehman test of isomorphism on graphs.

� DGK [69] leverages the dependency information between
sub-structures to extract useful sample features for graphs.

� GIN [56] is a simple neural graph isomorphism architec-
ture, whose discriminative/representational power is equal
to the power of the WL test.

� DiffPool [70] introduces a plug-and-play differentiable
graph pooling module to extract the hierarchical structural
information of the graph.

� Graph2vec [71] learns data-driven distributed represen-
tations of arbitrary-sized graphs in an unsupervised and
task-agnostic manner.

� Infograph [36] introduces an MI estimation mechanism to
encourage the sub-graph embedding to capture the global
properties of the graph.

� GraphCL [32] learns node representations across two aug-
mented graph views by maximizing the MI agreement
between two-view representations.

� JOAO [72] is a unified bi-level optimization framework
that automatically conducts graph augmentations to learn
meaningful graph embedding.

� GCC [33] is a representative SGP method that captures
the universal structural properties of graphs across multiple
instances.

� VGG16 [73] is a classical deep convolutional network with
small (3 × 3) convolution filters.

� ResNet18 [74] is a popular deep convolutional network
with hundreds of layers, where skip connections or short-
cuts are used to jump over some layers.

B. Overall Performance

1) Evaluation on Node Classification: As shown in Ta-
ble II, we report the node classification performance of thirteen
compared methods on seven datasets. From these results, sev-
eral major observations can be concluded: 1) the proposed
RARE consistently outperforms two supervised methods on all
datasets, with margins going up to 7.7%–14.8% on Flickr and
Yelp. These improvements demonstrate the great potential of
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TABLE II
NODE CLASSIFICATION PERFORMANCE COMPARISON

TABLE III
GRAPH CLASSIFICATION PERFORMANCE COMPARISON

masked graph autoencoders for effectively handling massive un-
labeled graph data; 2) InfoGCL is one of the strongest contrastive
self-supervised graph pre-training methods, while the proposed
RARE improves it by 0.7%, 0.6%, 2.7% accuracy on Cora,
Citeseer, and Pubmed, respectively. This phenomenon indicates
that RARE can effectively boost the learned representations by
conducting a mask-then-reconstruct mechanism instead of rely-
ing on a relatively complicated contrastive learning mechanism;
3) taking the results on WikiCS for example, RARE significantly
outperforms SeeGera, MaskGAE, and GraphMAE by 3.2%,
3.0%, and 3.3%, respectively. These benefits are attributed to the
novel idea of integrating implicit and explicit self-supervision
mechanisms to drive model learning by performing a joint
mask-then-reconstruct strategy in both latent feature and raw
data spaces; and 4) on Cora, RARE achieves competitive results
compared to the most powerful masked graph autoencoder, i.e.,
GraphMAE. However, it is possible that the full potential of
model optimization was not demonstrated due to the limited
size of the test dataset. Expanding the size of the test dataset,
for instance, by incorporating larger datasets like WikiCS and
Yelp, could reveal that RARE has the potential to yield better
performance.

2) Evaluation on Graph Classification: Table III summarizes
graph classification results of thirteen methods on seven datasets.

The results reveal several key observations that are similar to
those obtained from the node classification task: 1) the perfor-
mance of RARE is highly competitive compared to both graph
kernel-based methods and supervised methods, indicating that
the masked graph autoencoder has the potential to be a promising
alternative for self-supervised graph pre-training; 2) compared
to GraphCL and JOAO, our method achieves significant perfor-
mance improvements (up to 1.8%–11.7%) over them on almost
all datasets. However, some contrastive learning methods, such
as InfoGCL and MVGRL, demonstrate better performance than
masked graph autoencoders on MUTAG and PTC-MR. This
may be because in some cases, the partitioning of small-scale
graph data can be easily achieved through multi-view contrastive
learning; and 3) RARE achieves an approximate 1.1% average
performance gain over GraphMAE on all datasets, which further
indicates that RARE can effectively leverage both implicit and
explicit self-supervision signals to improve the quality of the
learned graph embedding.

3) Evaluation on Image Classification: To verify the supe-
riority of RARE in-depth, Table IV reports the image classi-
fication performance of six methods on three datasets. From
those results, we can obtain the following observations: 1) the
proposed RARE shows a significant advantage against exist-
ing state-of-the-art MGAEs and other baselines on all image
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TABLE IV
IMAGE CLASSIFICATION PERFORMANCE COMPARISON

TABLE V
ABLATION STUDY FOR THE MLFC SCHEME

benchmarks. For example, on Mnist and Fashion-mnist datasets,
RARE consistently outperforms the best edge-masking-based
MaskGAE and node-masking-based GraphMAE by 7.1%/2.5%
and 7.2%/5.9% accuracy, respectively. These improvements
once again demonstrate the effectiveness of introducing implicit
self-supervision signals for model learning; and 2) it is interest-
ing to note that RARE can achieve competitive or slightly better
results than typical supervised classification methods, such as
VGG16 and ResNet18. This implies that improving the relia-
bility of the self-supervision mechanism can facilitate RARE to
unleash its potential for SGP. Thus, the learned representations
show good robustness and generalization across a wide range of
downstream tasks.

C. Ablation Study

1) Impact of The MLFC Scheme: To demonstrate the effective-
ness of the proposed masked latent feature completion scheme,
we compare RARE with its three variants on eight datasets.
Concretely, “w/o-Pred.” implies that RARE removes the latent
feature predictor. “w/o-Mome.” indicates that RARE discards
the momentum graph encoder. “w-Fm(G)” denotes that the mo-
mentum graph encoder of RARE accepts G rather than Gm. As
shown in Table V, some major observations can be summarized:
1) when compared to “w/o-Pred.”, the latent feature predictor
produces a performance gain of 1.4%–5.2% on eight datasets,
indicating that this component plays a vital role in our SGP
solution. By iteratively conducting the mask-then-reconstruct
operation on incomplete graphs, the latent feature predictor
could be regarded as a hidden regularization that assists the
graph encoder in extracting more compressed features; 2) RARE

TABLE VI
ABLATION STUDY FOR LOSS FUNCTIONS LM AND LR

consistently outperforms “w/o-Mome.” on all eight datasets.
Taking the results on Corafull and IMDB-M for example, RARE
achieves 3.6% and 2.3% accuracy gains, respectively, demon-
strating the effectiveness of providing implicit self-supervision
signals to ensure the integrity and accuracy of predicted rep-
resentations. Similar observations can be concluded from the
results on other datasets; and 3) although “w-Fm(G)” can also
achieve competitive performance, it suffers from 0.3%–1.3%
accuracy degradation compared to our method. The reason be-
hind this may be that since Gv is a sub-graph of the original
graph G, a large amount of redundant information between
two-source encoded representations would overwhelm the la-
tent space, resulting in inferior representations for downstream
tasks.

2) Impact of The Loss Function: In this subsection, we con-
duct ablation studies to investigate the effect of different loss
functions. Table VI reports the accuracy results of RARE and
its four variants on WikiCS, Flickr, IMDB-M, and MUTAG.
LM and LR indicate the loss functions used for implicit and
explicit self-supervision mechanisms, respectively. Moreover,
MAE, MSE, and ISCE are abbreviations for mean absolute
error, mean square error, and improved scaled cosine error,
respectively. From the results presented in Table VI, we can
observe that 1) our method achieves better performance than
method (A) and method (B) by 2.8%/2.5% and 2.1%/3.1%
accuracy improvements on WikiCS and IMDB-M, respectively.
The reason behind this is that the MSE loss is better at modeling
detailed information from the data itself, while the ISCE loss
focuses more on estimating the similarity between two entities.
Therefore, minimizing MSE in the noisy raw data space may
mislead the network to overly preserve redundant graph details,
which may not always result in the required expressive encoding
capability for downstream tasks; and 2) RARE and method (D)
consistently outperform method (C) by 0.8%/0.6%, 1.4%/0.7%,
1.7%/1.8%, and 1.4%/0.4% on WikiCS, Flickr, IMDB-M, and
MUTAG, respectively. This is because the latent features contain
much category-related information that needs to be carefully
preserved. As a result, completing the masked content in the
latent space with MAE or MSE contributes more to the perfor-
mance than that with ISCE. Moreover, when one has to choose
a loss function for masked latent feature completion, both MAE
and MSE are suitable for guiding the model learning implicitly.

D. Robustness Against Outliers

To provide a more comprehensive understanding of our moti-
vations, we conduct experiments to make a comparison between
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Fig. 4. Method robustness comparison between the proposed RARE and the SOTA GraphMAE [9]: (a) On the adversarial WikiCS; (b) On the original WikiCS.
The X-axis, left Y -axis, and right Y -axis refer to the iteration, average loss value, and ACC performance, respectively. Note that the corresponding results on
the original WikiCS are provided as a reference. In our setups, both accuracy and loss variations are recorded with iterations. Before pre-training, we randomly
generate 5% outliers from the original WikiCS by row-wise shuffling their attributes within the raw attribute matrix. During the pre-training phase, a large random
subset of graph nodes (e.g., 75%) is masked out at first and then recovered by minimizing loss values of masked nodes only. After pre-training, we evaluate the
model by reporting the performance and the loss curves of normal nodes and all outliers, respectively. As seen, RARE delivers better accuracy and is more robust
than GraphMAE [9] in a noisy circumstance.

the proposed RARE and the state-of-the-art (SOTA) GraphMAE
on adversarial WikiCS. We also include results from the original
WikiCS as a reference. In our setups, we randomly divide all
nodes of the original WikiCS into 5% marked nodes and 95%
normal nodes. To construct an adversarial WikiCS, within the
raw attribute matrix, we row-wise shuffle the attributes of 5%
marked nodes to generate outliers. From the sub-figures in Fig. 4,
some key observations can be concluded: 1) the proposed RARE
achieves an approximate 2.5% accuracy gain against SOTA
GraphMAE on both adversarial and original datasets, which
demonstrates the superiority and effectiveness of our method;
2) GraphMAE suffers from obvious performance degradation
after around 400 iterations until convergence, while RARE
substantially enhances the training stability of masked graph
autoencoder with performance continually reaching a plateau.
We attribute this to the integration of implicit and explicit
self-supervision mechanisms, which can regularize each other to
provide more reliable guidance for model learning and produce
better performance than only minimizing a raw data recon-
struction loss; 3) when GraphMAE processes a noisy graph,
the average data loss value of outliers (i.e., the red curve) is
generally smaller than that of normal nodes (i.e., the green
curve), indicating that GraphMAE fits outliers better than normal
nodes. This phenomenon is opposite to that of our method,
implying that RARE has stronger robustness against adversarial
attacks than GraphMAE. These results solidly support our claim
that the robustness of the model would be compromised when
lacking of reliable self-supervision guidance for model learning;
and 4) we also notice an interesting phenomenon that the latent
loss curves of outliers and normal nodes almost overlap each
other on adversarial WikiCS. We guess that this is because our
implicit self-supervision mechanism is driven by the MSE loss,
which could ensure a strong alignment of latent features between
either outliers or normal samples, leading to subtle distinctions.

E. Hyper-Parameter Sensitivity

1) Impact of Mask Ratio r: To further illustrate the superiority
of RARE, we investigate its performance variation with respect
to different mask ratios. Concretely, we pre-train RARE by
varying the mask ratio r from 0.1 to 0.9 with a step size of 0.1.

Fig. 5. Performance comparison with the variation of hyper-parameters:
(a) The sensitivity of RARE when r varies from 0.1 to 0.9 with 0.1 step size;
(b) The sensitivity of RARE when α varies from 1 to 10 with 1 step size.
The X-axis and Y -axis refer to the r (or α) value and the ACC performance,
respectively.

From the results shown in Fig. 5(a), some key observations can
be obtained: 1) taking the results on PROTEINS for example,
continually increasing the value of r first improves the model
accuracy and then leads to relatively poor performance. This
indicates that the mask-then-reconstruct mechanism is indeed
effective for self-supervised graph pre-training, but a proper
r is required to balance the visible and masked information;
2) increasing r by more than 0.6 would cause a performance
drop in most cases, while the proposed RARE can still perform
well within a wide range of high mask ratio. For example, the
optimal masked ratio (i.e., 90%) for MUTAG is surprisingly
high, indicating that in some cases, the model with a high mask
ratio largely eliminates redundant information and thus yields
a nontrivial and meaningful self-supervision task; and 3) the
performance of RARE is relatively stable across a wide range
of r on COLLAB. This once again implies that RARE can
learn useful representations with limited observed information,
indicating its potential to achieve a good accuracy-efficiency
trade-off.

2) Impact of Hyper-Parameters α: Eq. (5) introduces a hyper-
parameter to balance the importance of two loss functions. To
show its influence in-depth, Fig. 5(b) presents the accuracy
variation of RARE on three datasets when α varies from 1 to
10 with a step size of 1. Our observations from this sub-figure
are as follows: 1) the effect of tuning α on model performance
varies across different datasets, but the stability of the model
performance is higher in the range of [5, 10]. This indicates that
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Fig. 6. Running time consumption (second) on Flickr and Yelp. All methods
are evaluated on the same device with one NVIDIA 3090 GPU card, and the
reported result refers to an average time of 10 iterations.

searching α from a reasonable hyper-parameter region could
positively influence the model performance; 2) the accuracy
variation is relatively stable across a wide range ofα on IMDB-B
and WikiCS, while on Cora, it shows a trend of first rising
and then dropping slightly. This suggests that RARE requires a
suitable α to ensure the quality of learned representations when
reconstructing the raw attributes; and 3) RARE tends to perform
well by setting α = 6 according to the results on three datasets.

F. Running Time Consumption

Fig. 6 shows a comparison of the running time consumption
among a scalable contrastive SGP method (i.e., CCA-SSG) and
three MGAEs on Flickr and Yelp datasets. All methods are
evaluated on the same device with one NVIDIA-3090 GPU card,
and the reported result refers to an average time of 10 iterations.
As evidenced by the results, since RARE outperforms CCA-SSG
in terms of speed on both Flickr and Yelp datasets, the com-
putational efficiency of utilizing a masked graph autoencoder
to handle large-scale graphs is promising. Moreover, RARE
can achieve better accuracy than MaskGAE and GraphMAE
without considerably increasing the computation cost. These
experimental results are consistent with previous complexity
analyses, once again demonstrating that our method can scale
to large-scale scenarios.

More experiments and comparisons are provided in Appendix
F and Appendix G, available online, due to the space limit, such
as ablation for data-masking setups, ablation for latent feature
predictor setups, visualization, and more robustness study.

V. CONCLUSION AND FUTURE WORK

In this work, we revisit the inherent distinction between
traditional data formats (e.g., images and texts) and graphs
for masked signal modeling, and investigate the applicability
problem of leveraging masked autoencoders to process graph
data. This motivates us to propose a novel framework called
RARE for self-supervised graph pre-training. In our method,
we implement both implicit and explicit self-supervision mech-
anisms for masked content recovery by performing a joint mask-
then-reconstruct strategy in both latent feature and raw data
spaces. Particularly, the designed masked latent feature com-
pletion scheme can improve the certainty in inferring masked
data and the reliability of the self-supervision mechanism. We
also provide theoretical analyses to explain why RARE can work
well and how the designed components contribute to the model
performance. Extensive experiments on seventeen datasets have

demonstrated the effectiveness and superiority of RARE on three
downstream tasks.

However, there are still some limitations of existing masked
graph autoencoders that have not been fully explored. For
instance, existing MGAEs assume that all samples within a
graph are available and complete, which may not always hold
in practice since it is hard to collect all information from
real-world graph data. Future work may extend the proposed
RARE to the data-incomplete circumstance, and investigate the
connections and differences between self-supervised masked
graph pre-training and self-supervised incomplete graph pre-
training. Moreover, in the current version, RARE only supports
reconstructing each masked node from its adjacent neighbors via
graph attention layers. In the future, developing a more effective
and efficient MGAE to explore global features for information
recovery is another interesting direction.
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